Approximating a Norm by a Polynomial

نویسنده

  • Alexander Barvinok
چکیده

We prove that for any norm k k in the d-dimensional real vector space V and for any odd n > 0 there is a non-negative polynomial p(x), x 2 V of degree 2n such that p 1 2n (x) kxk n + d ? 1 n 1 2n p 1 2n (x): Corollaries and polynomial approximations of the Minkowski functional of a convex body are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical representation for approximating solution of fuzzy polynomial equations

In this paper, the concept of canonical representation is proposed to find fuzzy roots of fuzzy polynomial equations. We transform fuzzy polynomial equations to system of crisp polynomial equations, this transformation is perform by using canonical representation based on three parameters Value, Ambiguity and Fuzziness. 

متن کامل

Maximum - Norm Interior Estimates for Ritz - Galerkin Methods

In this paper we obtain, by simple means, interior maximum-norm estimates for a class of Ritz-Galerkin methods used for approximating solutions of second order elliptic boundary value problems in R . The estimates are proved when the approximating subspaces are any of a large class of piecewise polynomial subspaces which we assume here to be defined on a uniform mesh on the interior domain. Opt...

متن کامل

M ay 2 00 1 APPROXIMATING A NORM BY A POLYNOMIAL

We prove that for any norm · in the d-dimensional real vector space V and for any odd n > 0 there is a non-negative polynomial p(x), x ∈ V of degree 2n such that p 1 2n (x) ≤ x ≤ n + d − 1 n 1 2n p 1 2n (x). Corollaries and polynomial approximations of the Minkowski functional of a convex body are discussed.

متن کامل

Fast Low Rank Approximation of a Sylvester Matrix by Structured Total Least Norm

The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with a Sylvester matrix. In this paper, we present an algorithm based on fast Structured Total Least Norm(STLN) for constructing a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of given...

متن کامل

Computing Approximate GCD of Univariate Polynomials by Structure Total Least Norm

The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certified 2-GCD for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007